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ABSTRACT: The study of fixed-point theory is very vast area for researchers. It has huge applications in 

many disciplines of pure and applied part of Mathematics along with Physics, Chemistry, Biology, Computer fields 

etc. Here we are trying to establish a fixed-point theorem for integral type compatible mapping satisfying integral 

type contractive inequality in Cone metric space. 
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1. INTRODUCTION 

Fixed point theory is very extensive and wider field for research. The concept of metric space 

was introduced by M. Frechet. Banach contraction principle is indeed the most popular result of 

fixed-point theory, this principle has many applications in several fields like Biology, Physics, 

Chemistry, Topology, Digital Topology, Fractal theory etc. Branciari gave fixed point result for 

a single mapping which satisfying Banach contraction condition of integral-type inequality 

(Branciari, 2002). After that, many researchers have defined some fixed-point theorems 

involving more general contractive conditions. Huang and Zhang gave the concept of Cone 

metric space and established fixed point theorems for contractive mappings in cone metric 

space (Huang & Zhang, 2007). Suzuki  shows that Meir-Keer contractions of integral type 

condition (Suzuki, 2007). Abbas and Jungck generalized the result of two self-maps through 

weak compatibility in cone metric space (Abbas & Jungck, 2008). Also Rezapour and 

Hamlbarani  proved the normality condition in cone metric space and established fixed point 

theorem, which is milestone in developing fixed point theory in cone metric space (Rezapour & 

Hamlbarani, 2008). Wadkar et.al proved some fixed point and common fixed point theorems 

for integral type mappings in cone metric space which was generalized form of some well 

known theorems ( Wadkar et.al, 2015). In this paper, we establish a fixed-point theorem for 

weakly compatible mapping satisfying a general contractive inequality of integral type. 
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2. PRELIMINARIES 

In this section we recall some notations and definitions 

Definition 2.1(Wadkar et.al, 2015):-let E always be a real Banach space and P is a subset 

of E. Then P is called a cone in E if, 

(i)  P is closed, non–empty and P ≠ {0} 

(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P implies ax+by ∈ P 

(iii) x ∈ P and –x ∈ P implies x=0 that is P∩(-P)={0} 

Given a cone 𝑃⊂𝐸, we define a partial ordering ≤ with respect to P by 𝑥 ≤ 𝑦 if and only if        

𝑦 − 𝑥∈𝑃. We write 𝑥<𝑦 to indicate that 𝑥 ≤ 𝑦 but 𝑥 ≠ 𝑦, while 𝑥≪𝑦 if and only if 𝑦 − 

𝑥∈𝐼𝑛𝑡𝑃, Int denotes the interior of P. 

Definition 2.2 (Wadkar et.al, 2015):-The least positive number k satisfying the above 

condition is called the normal constant of P. The authors showed that there is no normal cone 

with normal constant M < 1 and for each K > 1. There is cone with normal constant M > k. 

Definition2.3 (Wadkar et.al, 2015):-The cone P is called regular if every increasing 

sequence which is bounded from the above is convergent, that is if{xn}n≥1 is a sequence such 

that x1x2  ...y for some y ∈ X, then there is x ∈X such that lim
n

 ||𝑥n-𝑥||= 0. The cone P is 

regular iff every decreasing sequence which is bounded from below is convergent. 

Definition 2.4 (Wadkar et.al, 2015):-Let X a non-empty set and X is a real Banach space, d 

is a mapping from X into itself such that d satisfies following conditions: - 

(d1)
( , )

0
( )

d x y

t dt ≥ 0    for all x,y∈X 

(d2)
( , )

0
( )

d x y

t dt = 0  ⇔x = y  

(d3)
( , )

0
( )

d x y

t dt     = 
( , )

0
( )

d y x

t dt  

(d4)
( , )

0
( )

d x z

t dt ≤ 
( , )

0
( )

d x y

t dt +
( , )

0
( )

d y z

t dt  

Then d is called a cone metric on X and(X, d) is called Cone Metric Space 
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Definition 2.5 (Wadkar et.al, 2015):- Let A & S be a two mappings of a cone metric space 

(X, d) then it is said to be compatible if lim
n

( , )

0
( )

d ASx SAx
n n t dt =0 whenever }{ nx is a sequence 

in X such that  lim
n

Axn= t and lim
n

Sxn= t for some  tX  of cone metric space 

Definition 2.6 (Wadkar et.al, 2015):- Let A and S  are two self-mappings of (X, d) then 

these are said to be weakly compatible, if they commute at a coincidence point, that is SxAx 

implies that  

SAx ASx ∀ x ∈ 𝑋..                                                                                                                                                

It is easy to see that compatible mapping commutes at their coincidence points. It is note that 

compatible maps are weakly compatible but converse need not be true for any Xx . 

3. MAIN RESULT 

Here we will establish compatibility and contractive conditions for self-mappings  A, B, C & 

D in complete cone metric space without assuming their normality. 

Theorem 3.1:- Let (X,d) be a complete cone metric space with normal cone P. Let A,B, C 

and D be four self-mappings from X to X satisfying the condition 

 ∅ 𝑡 𝑑𝑡
𝑑 𝐴𝑥 ,𝐵𝑦 

0

   ≤ 𝜆 ∅ 𝑡 𝑑𝑡 + 𝜇 ∅ 𝑡 𝑑𝑡
𝑑 𝐵𝑦 ,𝐷𝑦 

0

𝑑 𝐴𝑥 ,𝐶𝑥 

0

+ 𝛿  ∅ 𝑡 𝑑𝑡
𝑑 𝐶𝑥 ,𝐷𝑦 

0

 

+𝛾 ∅ 𝑡 𝑑𝑡
𝑑 𝐴𝑥 ,𝐷𝑦 +𝑑(𝐶𝑥 ,𝐵𝑦 )

0

 

 For all 𝓍, y ∈ X; 𝜆, 𝜇, 𝛿, 𝜂 ∈[0,1/2),with 𝜆+𝜇+𝛿+2𝛾 < 1 

 (i).If A(X) ⊆D(X) & B(X) ⊆C(X) 

 (ii).(A,C) and (B,D) are weakly compatible mapping. 

 (iii).A and C are continuous then A,B,C and D have unique common fixed point in X. 

 (iv)-For some 𝜆, 𝜇, 𝛿, 𝜂 ∈[0,1/2) with 𝜆+𝜇+𝛿+2𝛾 < 1 Such that 𝓍, y ∈ X.    
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 Then A,B,C and D have a unique common fixed point in X. 

Proof:-Let Xx 0 be any point, now construct a sequence }{ kx  and }{ ky   such that  

kkk yDxAx 212   , 122212   kkk yCxBx  ; .Nk  ..........(3.1.1) 

Now we consider, 

2 2 1( , )
( )

0

k kd y y
t dt



 =
2 2 1( , )

( )
0

k kd Ax Bx
t dt



  

≤ 𝜆
2 2 1( , )

( )
0

k kd Ax Bx
t dt



  +𝜇 
2 1 2 1( , )

( )
0

k kd Bx Dx
t dt

 

  

                              +𝛿
,2 2k 1(C D )

( )d
0

kd x x
t t



 +𝜆
, ,2 2 1 2 2 1( ) ( )

( )
0

k k k kd Ax Dx d Cx Bx
t dt

 

  

                               ≤ 𝜆
2 2 1( ),

( )d
0

k kd y y
t t



  +𝜇
,2 1 2( )

( )d
0

k kd y y
t t



  
 

  +𝛿
2 1 2( , )

( )d
0

k kd y y
t t



 +𝛾
2 2 2 1 2 1( , ) ( , )

( )d
0

k k k kd y y d y y
t t

 
  

                               ≤ 𝜆
2 2 1( , )

( )d
0

k kd y y
t t



  +𝜇
2 1 2( , )

( )d
0

k kd y y
t t



  

                               +𝛿
2 1 2( , )

( )d
0

k kd y y
t t



 +𝛾
2 1 2 2 2 1( , ) d( , )

( )d
0

k k k kd y y y y
t t

 

    

⟹(1-𝜇-γ)
2 2 1( , )

( )d
0

k kd y y
t t



 ≤ 𝜆
2 2 1( , )

( )d
0

k kd y y
t t



 +𝛿
2 1 2( , )

( )d
0

k kd y y
t t



  

                             + 𝛾 2 1 2
( , )

( )d
0

k k
d y y

t t

  

⟹
2 2 1( , )

( )d
0

k kd y y
t t



 ≤𝜆+𝛿+𝛾

1−𝜇−𝛾

2 1 2( , )
( )d

0

k kd y y
t t
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⟹
2 2 1( , )

( )d
0

k kd y y
t t



 ≤ h
2 1 2( , )

( )d
0

k kd y y
t t



         ....................(3.1.2) 

Where h= 
𝜆+𝛿+𝛾

1−𝜇−𝛾
< 1 

Now we let, 

223222   kkk yDxAx , 324232   kkk yCxBx  

2 2 2 2(A , )
( )d

0

k kd x Bx
t t

 

 ≤ 𝜆
2 2 2 2( , )

( )d
0

k kd Ax Cx
t t

 

  + 𝜇
2 1 2 1(B ,D )

( )d
0

k kd x x
t t

 

  

                                                    +𝛿
2 2 2 1(C ,D )

( )d
0

k kd x x
t t

 

  

                                                   +𝛾
2 2 2k 1 2 2 2k 1(A ,D ) (C , )

( )d
0

k kd x x d x Bx
t t

   

  

By using equation (3.1.1) we get- 

2 2 2 1( , )
( )d

0

k kd y y
t t

 

  =  
2 2 2 1(A , )

( )d
0

k kd x Bx
t t

 

  

                ≤  𝜆
2 2 2 1( , )

( )d
0

k kd y y
t t

 

 +𝜇
2 1 2( , )

( )d
0

k kd y y
t t



  

+𝛿
2 1 2( , )

( )d
0

k kd y y
t t



 +𝛾
2 2 2 2 1 2 1( , ) ( , )

( )d
0

k k k kd y y d y y
t t

  
  

   ≤  𝜆
2 2 2 1( , )

( )d
0

k kd y y
t t

 

 +𝜇
2 1 2( , )

( )d
0

k kd y y
t t



  

                                      + 𝛿
2 1 2( , )

( )
0

k kd y y
t dt



 +γ
2 2 2 1 2 1 2( , ) ( , )

( )d
0

k k k kd y y d y y
t t

  

  

 (1-𝜆-γ)
2 2 2 1( , )

( )d
0

k kd y y
t t

 

 ≤ 𝜇
2 1 2( , )

( )d
0

k kd y y
t t



 +𝛿
2 1 2( , )

( )d
0

k kd y y
t t
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 + γ 2 1 2
( , )

( )d
0

k k
d y y

t t

  


2 2 2 1( , )

( )d
0

k kd y y
t t

 

 ≤
𝜇+𝛿+𝛾

1−𝜆−𝛾

2 1 2( , )
( )d

0

k kd y y
t t



  

 ℎ =
𝜇+𝛿+𝛾

1−𝜆−𝛾
< 1 

 (1-𝜆-γ)
2 2 2 1( , )

( )d
0

k kd y y
t t

 

   ≤ h
2 1 2( , )

( )d
0

k kd y y
t t



  where  ℎ =
𝜇+𝛿+𝛾

1−𝜆−𝛾
< 1 

        ≤h.h
2 1 2( , )

( )d
0

k kd y y
t t




 

 ....  ....  ... 

   
≤ h

2k+1 0 1( , )
( )d

0

d y y
t t  

Whereℎ =
𝜇+𝛿+𝛾

1−𝜆−𝛾
< 1,  

Now for any m > k 

2 2( , )
( )d

0

k md y y
t t ≤

2 12 2 1 2 2 1 2( , ) ( , ) ( , )
( )d

0

kk k k m md y y d y y d y y
t t

   


 

                                     ≤
2 2 1( , )

( )d
0

k kd y y
t t



 
2 1 2 2( , )

( )d
0

k kd y y
t t

 

  ....... 

 ..........
2 1 2( , )

( )d
0

m md y y
t t



  

  
≤ h

2k 0 1( , )
( )d

0

d y y
t t   h

2k+1 0 1( , )
( )d

0

d y y
t t  ... ... ...

 

 
≤(h

2k
+h

2k+1
+h

2k+2
+.......)

0 1( , )
( )d

0

d y y
t t  
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 ≤
h

h k

1

2
0 1( , )

( )d
0

d y y
t t  

 ||
2 2( , )

( )
0

n md y y
t dt || ≤

h

h k

1

2
0 1( , )

( )d
0

d y y
t t  

⟹ lim
n

||
2 2( , )

( )
0

n md y y
t dt ||→ 0 

⟹ lim
n

||
2 2 2 1( , )

( )
0

k kd y y
t dt

 

 ||→0    as n→∞ 

Since }{ kx is a Cauchy sequence, therefore Xis complete which converges to Xu . 

Hence (X,d) is complete cone metric space. 

Thus, uxk  as n  and uAx k }{ 2 and uBx k  }{ 12 . 

Case 1:- Map C is continuous 

As C is continuous we have:- 

C
2𝓍2k → Cu, CA𝓍2k → Cu 

Since (A,C) is compatible, so we have AC𝓍2k → Cu 

Now, 

( , )
( )

0

d Cu u
t dt  ≤

2( , )
( )

0

kd Cu ACx
t dt +

2 2 1( , )
( )

0

k kd ACx Bx
t dt



  

+
2 1( , )

( )
0

kd Bx u
t dt



  

                              = 
2( , )

( )
0

kd Su ACx
t dt +

2 1( , )
( )

0

kd y u
t dt
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+
2 2 1( , )

( )
0

k kd ACx Bx
t dt



  

Where x = C𝓍2k&y = 𝓍2k+1 

( , )
( )

0

d Cu u
t dt ≤ 

2( , )
( )

0

kd Cu ACx
t dt +

2 1( , )
( )

0

kd y u
t dt



  

+𝜆

2

2 2( , )
( )

0

k kd ACx C x
t dt  +𝜇

2 1 2 1( , )
( )

0

k kd Bx Dx
t dt

 

  

+𝛿

2

2 2 1( , )
( )

0

k kd C x Dx
t dt



  

                                        +𝛾
2

2 2 1 2 1 2
( , ) ( , )

( )
0

k k k k
d ACx Dx d Bx C x

t dt 


  

            =
2( , )

( )
0

kd Cu ACx
t dt +

2 1( , )
( )

0

kd y u
t dt



  

+ 𝜆
2

2 2
( , )

( )
0

k k
d ACx C x

t dt + 𝜇
2 1 2( , )

( )
0

k kd y y
t dt



  

+𝛿

2

2 2( , )
( )

0

k kd C x y
t dt +𝛾

2

2 2( , ) ( , )
( )

0

k kd ACx Cu d Cu C x
t dt



  

  

     ≤ 
2( , )

( )
0

kd Cu ACx
t dt +

2 1( , )
( )

0

kd y u
t dt



  

+𝜆

2

2 2( , ) ( , )
( )

0

k kd ACx Cu d Cu C x
t dt



 +
2 1 2( , ) ( , )

( )
0

k kd y u d u y
t dt



  

+𝛿

2

2 2( , ) ( , ) ( , )
( )

0

k kd C x Cu d Cu u d u y
t dt
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2

2 2 2 1 2( , ) ( , ) ( , ) ( , ) ( , ) ( , )
( )

0

dk k k kd ACx Cu d Cu u d u y y u d Cu u d Cu C x
t dt 

    

   

⟹ [1-𝛿-2𝛾]
( , )

( )
0

d Cu u
t dt ≤ [1+𝜆+𝛾]

2( , )
( )

0

kd Cu ACx
t dt  

+[𝜆+𝛿+𝛾] 

2

2( , )
( )

0

kd Cu C x
t dt  

                                         +[1+𝜇+𝛾]
2 1( , )

( )
0

kd y u
t dt



 +[𝜇+𝛿+𝛾] 
2( , )

( )
0

kd u y
t dt  

AC𝓍2k → Cu, C
2𝓍2k → Cu  

{y2k} → u   &{y2k+1} → u 

So we have, d(Cu, u) = 0,  we get Cu = u 

Now, 

( , )
( )

0

d Au Cu
t dt ≤ 

2 1( , )
( )

0

kd Au Bx
t dt



 + 
2 1( , )

( )
0

kd Bx Cu
t dt



  

                                  =
2 1( , )

( )
0

kd Cu ACx
t dt



 +
2 1( , )

( )
0

kd y Cu
t dt




 

+ 
2 1( , )

( )
0

kd Cu ACx
t dt




 

Let 𝓍 = u,&y = 𝓍2k+1,we have  

( , )
( )

0

d Au Cu
t dt ≤

2 1( , )
( )

0

kd y Cu
t dt



 +𝜆
( , )

( )
0

d Au Cu
t dt  

+𝜇
2 1 2 1( , )

( )
0

k kd Bx Dx
t dt

 

  

                                     +𝛿
2 1( , )

( )
0

kd Cu Dx
t dt



 +𝛾
,2 1 2 1( , ) ( )

( )
0

k kd Au Dx d Bx Cu
t dt
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                             =
2 1( , )

( )
0

kd y Cu
t dt



 +𝜆
2 1 2 1( , ) ( , )

( )
0

k kd Au Dx d Bx Cu
t dt

 

  

+𝜇
2 1 2( , )

( )
0

k kd y y
t dt



  +𝛿
2( , )

( )
0

kd Cu y
t dt  

+𝛾
2 2 1 2( , ) ( , )

( )
0

k k kd Au y d y y
t dt

 

  

                             ≤ 
2 1( , )

( )
0

kd y Cu
t dt



 + 𝜆
( , )

( )
0

d Au Cu
t dt  

+ 𝜇
2 1( , ) ( , )

( )
0

k kd y Cu d Cu y
t dt



 + 𝛿
2( , )

( )
0

kd Cu y
t dt  

+𝛾
2 2 1( , ) ( , ) ( , )

( )
0

k kd Au Cu d Cu y d y Cu
t dt

  

  

 [1-𝜆-𝛾]
( , )

( )
0

d Au Cu
t dt ≤(u+𝛿+𝛾)

2( , )
( )

0

kd y Cu
t dt +(1+𝜇)+

2 1( , )
( )

0

kd y Cu
t dt



  

Using Cu = u than we have, 

[1-𝜆-𝛾] 
( , )

( )
0

d Au Cu
t dt ≤ (u+𝛿+𝛾) 

2( , )
( )

0

kd y u
t dt +(1+𝜇+𝛾) 

2 1( , )
( )

0

kd y u
t dt



  

As uy k }{ 2 & uy k  }{ 12  

We have d(Au,u)=0 

And, Au = Cu = u. 

Thus u is a point of coincidence of the pair of maps (A,C). 

As A(x)⊆ D(x) there exists v𝜖X such that u=Au=Dv so, u=Au=Cu=Dv 

Taking 𝓍 = u, y = v, 
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( , )
( )

0

d Au Bv
t dt ≤ 𝜆

( , )
( )

0

d Au Cu
t dt +𝜇

( , )
( )

0

d Bv Dv
t dt  

+𝛿
( , )

( )
0

d Cu Dv
t dt +𝛾

( , ) ( , )
( )

0

d Au Dv d Bv Cu
t dt



  

So, we have, 

( , )
( )

0

d u Bv
t dt ≤ (𝜇+𝛾)

( , )
( )

0

d u Bv
t dt  

As 𝜇+𝛾<1 it follows that d(Bv,u)=0 

And we get Bv=u 

Thus Bv=Dv=u as their (B,D) is weak compatible we get Bu=Du 

Taking 𝓍=u, y=u using Au=Cu &Bu=Du we get 

( , )
( )

0

d Au Bu
t dt ≤ (𝛿+2𝛾)

( , )
( )

0

d Au Bu
t dt  

Au=Bu 

As 𝛿+2𝛾 <1 and we have u=Au=Cu=Bu=Du 

Thus u is a point of coincidence of the four self-mapsA,B,C,and D in this case. 

Case 2:- Map A is continuous 

As C is continuous, we have  

A
2𝓍2k→Au   ,   AC𝓍2k→Au 

Since (A,C) is compatible, so we have CA𝓍2k→Au 

Now, 

( , )
( )

0

d Au u
t dt ≤

2

2( , )
( )

0

kd Au A x
t dt +

2

2 2 1( , )
( )

0

k kd A x Bx
t dt



 +
2 1( , )

( )
0

kd B u
t dt
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Similarly, we can prove 

[1-𝛿-2𝛾]
( , )

( )
0

d Au u
t dt ≤(1+𝜆+𝛾)

2

2( , )
( )

0

kd Au A x
t dt  

                                            + (𝜆+𝛿+𝛾)
2( , )

( )
0

kd Au CAx
t dt +(𝜇+𝛿+𝛾) 

2( , )
( )

0

kd y u
t dt  

+(1+𝜇+𝛾)
2( , )

( )
0

kd y u
t dt  

As CA𝓍2A → Au, A
2𝓍2k → Au  

{y2k} → u   &{y2k+1} → u 

So we have, d(Au, u) = 0,  we get Au = u 

A(x)⊆D(x) there exist v1𝜖X such that, U=Au=Dv1 

1( , )
( )

0

d u Bv
t dt ≤

2 1( , )
( )

0

kd Ax Bv
t dt +

2( , )
( )

0

kd Ax u
t dt  

Taking 𝓍 = 𝓍2k, y = v1 then u = Tv1 

[1-𝜇-𝛾] 
1( , )

( )
0

d Bv u
t dt ≤ (1+𝜆+𝛾)

2( , )
( )

0

kd u y
t dt +(𝛾+𝜆+𝛿)

2 1( , )
( )

0

kd u y
t dt



  

( , )
( )

0

d u Bu
t dt ≤ 

2( , )
( )

0

kd y u
t dt +𝜆

2 2( , )
( )

0

k kd Ax Cx
t dt

 

+𝜇
( , )

( )
0

d Au Du
t dt  

+𝛿
2 1( , )

( )
0

kd C Du
t dt



 +𝛾
2( , ) ( , )

( )
0

kd Au Du d Cx Bu
t dt



  

[1-𝛿-2𝛾] 
( , )

( )
0

d Bu u
t dt ≤ (1+𝜆+𝛾) 

2( , )
( )

0

kd u y
t dt +(1+𝛾+𝛿)

2 1( , )
( )

0

kd u y
t dt
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As uy k }{ 2 & uy k  }{ 12  

We have d(u,Bu)=0 

And we get Bu = u thus u=Bu=Du=Au 

Now as B(x)⊆ C(x) there exists w1𝜖X such that,U=Bu=Cw1 

1( , )
( )

0

d Aw u
t dt =

1( , )
( )

0

d Aw Bu
t dt  

𝓍 = w1, y = u with u=Du=Bu=Cw1 

1( , )
( )

0

d Aw Bu
t dt ≤ 𝜆

1 1( , )
( )

0

d Aw cw
t dt +𝜇

( , )
( )

0

d Bu Du
t dt  

+𝛿
1( , )

( )
0

d cw Du
t dt +𝛾

1 1( , ) ( , )
( )

0

d Aw Du d Bu Cw
t dt



  

                         = 𝜆
1( , )

( )
0

d Aw u
t dt +𝜇

( , )
( )

0

d u u
t dt  

+𝛿
( , )

( )
0

d u u
t dt +𝛾

1( , ) ( , )
( )

0

d Aw u d u u
t dt



  

                       =𝜆
1( , )

( )
0

d Aw u
t dt +𝛾

1( , )
( )

0

d Aw u
t dt  

  So, 
1( , )

( )
0

d Aw u
t dt ≤ (𝜆+𝛾) 

1( , )
( )

0

d Aw u
t dt  

Hence AW1 = u as, 𝜆+𝛾< 1 

Aw1 = Cw1 = u as (A,C) is compatible so (A,C) is weakly compatible. 

Au = Cu thus u = Au = Bu = Cu = Du  

Hence u is common fixed point of the four self-maps in both the cases. 
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UNIQUENESS 

Let w = Bw = Cw = Dwbe another common fixed point of four self-maps. 

Taking 𝓍 =u and y = w than we get 

( , )
( )

0

d Au Bw
t dt ≤ 𝜆

( , )
( )

0

d Au Cu
t dt +𝜇

( , )
( )

0

d Bw Dw
t dt  

+𝛿
( , )

( )
0

d Cu Du
t dt +𝛾

( , ) ( , )
( )

0

d Au Dw d Bw Cu
t dt



  

⟹
( , )

( )
0

d u w
t dt ≤  [𝛿+2𝛾] 

( , )
( )

0

d u w
t dt  

  Hence u = w as 𝛿+2𝛾< 1.  

Thus, the four self-mapsA,B,C & D have a unique common fixed point. 

4.CONCLUSION:-We introduced the concept of compatibility of pair of self-maps in 

cone metric space without assuming its normality. By Using this concept, we establish a unique 

common fixed-point theorem for integral type compatible mapping in which four self-mappings 

satisfying a general contractive condition in cone metric space. 
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