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1. Introduction:

The study of stability involves the use of functional equations. Ulam [14] proposed stability concerns of
functional equations involving group homomorphisms in 1940. Under the presumption that groups are
Banach spaces, Hyers [8] responded positively to Ulam's query regarding additive groups in 1941.A0oki
[2] and Rassias[12] extended Hyers' theorem to include additive mappings and linear mappings,
respectively, by taking into account an unbounded Cauchy difference ||d(v+y) — d(V) — dM)|| <
e([[vI|P + ||y]|P) for all € > Oandp € [0,1). Gavruta [5] also presented Rassias generalization theorem,
substituting a control function ¢(v,y)fore(||v||? + ||y||?). The concept of the Hyers-Ulam-Rassias
stability of functional equations has been developed largely thanks to Rassias' publication. In 1982,
Rassias [13] adopted the Rassias theorem [14]'s contemporary methodology, substituting the factor

product of norms for the sum of norms.

Hyer’s theorem has been expanded in a number of ways over the past few decades; for a list see ([1], [3],

[4], [6], [7], [9], [10], [11]) The present work introduces a quadratic functional equation follow as:

Px+y—-22)+p(x -2y +2) =2y - 22) + p(x —2) + p(x —y) (1)

and derive its solution. Also, obtains Hyer- Ulam-Rassias stability in Banach space.
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2. General Solution

Theorem 2.1. If a mapping ¢: E — F satisfying the functional equation (1), then the mapping ¢:E = F

is quadratic.
Proof: Putting x = y and z = 0 in equation (1), we get
P2y) + o (=y) = ¢2y) + ¢(¥) + ¢(0)
P(=y) = d(¥) + $(0)
Taking x = y = z in equation (1) it will be ¢(0) = 0.
Then equation (3) becomes
¢(=y) = o)
Taking z = 0 in equation (1), we get
P(x+y) +P(x—2y) = p(2y) + ¢(x) + p(x —y)
Px+y) =¢dQ2y) +d(X) + dx—y) — Pp(x—2y)
Similarly, taking z = 0 and y = —y in equation (1), we obtain
P(x—y) = P(=2y) + () + p(x +y) — p(x + 2y)
Adding equation (5) and equation (6), and using ¢(—y) = ¢(y) we have
20(2y) + 2¢(x) = p(x — 2y) + p(x + 2y)
Now putting y = 7, we obtain
2¢(0) +20(y) = px+y) + p(x—y)
taking x = , in above equation, we get
P (2x) = 2%¢(x)

clearly, this equation become a quadratic equation.
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3. Stability of Quadratic Functional Equation

We define:
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D(xy,2) = ¢p(x +y —22) + p(x — 2y + 2z) — p(2y — 22) — p(x — 2) = p(x —~ ¥)

9)

foreachx,y,z € E.

Theorem 3.1. Assume that IV and W are Banach spaces. If a function ¢: V — W satisfies the inequality

[IDp(x,y,2)|| <&
for some € > 0, for all x, y,z € V, then the limit

Qz(x) — llm ¢(32mX)
mooo 3°M

exists for each x € V and Q,:V — W is unique quadratic function such that

llp(x) = Q2)II <5
forany x € V.
Proof: Replace (x,y, z) by (z,2z,32) in (10), we have

l1p(32) = 9¢(2)|| <&

|5 - el <3
Replace z by 3'z in (14), we have
[#52 - o3| <3

&
32(t+1)

| ¢ (3t+12) 3 ¢ (3t2)

32(t+1) 32t

forall z € Vand all £ > 0. Since

PGS _ gy = gt (¢(3i“z) _ ¢(3iz)) 17)

32m 32(i+1) 32i
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So,
P3™2) P32 9Bl
| 32m d)( )” < | 32(i+1) 320 (18)
-1 € _ € 1
<Xi% 32(+D) g (1 - 32_m) (19)

Replace z by 3™z, we get

| PE™Mz) _ $(3M2)

32(m+m) 32m

<5 (3~ 7om) @0

(3™ z)

forallze Vandall e > 0. R.H.S - 0 as m - o then { } is a Cauchy sequence in W. Since W is

$3™Mz)

Banach- space, thus sequence { } converges to some Q,(z) e W.Forz €V,

1Q2(2) - $ @I = [|Qu(2) - L2+ 2522 — () |

< e - 257

32m

+ |22 - o) |

<[lQ:@ - 252

+i(1-3m) @)
forall z € V and all € > 0. Taking the limit m — oo,
102(2) — ¢l < £ (22)
Replacing (x,y, z) by (3™x, 3™y, 3™z) in (10), we have
IDH(3™x,3™y,3m2)|| < &
|o¢ G =)

Applying m — oo, show that Q, satisfies the functional equation (1).

&

<= (23)

32m

To prove the uniqueness of Quadratic mapping Q,. Assume that there exists another Quadratic mapping
Q,, which satisfies inequality (12). Fix z € V. Clearly, Q,(3'z) = 3%:Q,(z) and Q,(3'z) = 3%:Q,(z) for
all z € V, from (12), we have

B 0 3m 32m 32m Q’ 3m
102(2) — Q22| = |52 — 52 4+ 2020 L0

32m 32m 32m 32m
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1 £
i (24)
Taking m — oo, we have Q,(2) = Q', (2).
Theorem 3.2. Assume that V and W are Banach spaces. If a function ¢: V — W satisfies the inequality
[1Dp(x,y, 2)|| < O(IxIIP + [lyl[P + [|zI]P). (25)
For some p < 3, for all x,y,z € V, then the limit
Q2(2) = lim 2570 (26)
m —oo
exists for each z € V and Q,: V — W is unique quadratic function such that
911z|P
16(2) — Q@I < Grtss @)
forallz e V.
Proof: Replace (x,y, z) by (z,2z,32) in (25), we have
3z
16(32) - 9@l < blizIlP |22 - )|
2] p
<2t (28)
Replace z by 3¢z in (28), we have
3ty 6 3 z|[P
||¢( b(3tv )” < stz || 13
o3z 932 811z]1P
| 32(e+1) | g2t = 32(c+D)—tp (29)
forall z € V. Since
$(@3™z) pB*z)  $@B'2)
32mz ¢( )_ (32(1+1) 32i ) (30)

So,

(')

|(M33Z—ZZ)‘¢( E Z ‘¢3(23(LL++11)
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m—1 _0llz|P
i=0 32(i+1)-pi

_ OllzlI 1
T (32-3p) (1 - 3m(2—p)) (31)

Replace z by 3™z, we get

| B2 $(3M2)

32(m+m) 32m

a|z]|P 1 1
S (32_3p) (32_m - 32(m+m)—mp ) (32)

forallz eV. RHS—>Oa5m—>oothen{¢(3

} is a Cauchy sequence in W. Since W is Banach- space,

$@3™z)

thus sequence { } converges to some Q,(z) e W.Forz e V,

10:(2) — p(@)Il = || Q2(2) - L2+ 2822 — (a)|

< [z - 252 + |52 - 0@

$(3"z) 011z|IP 1
= ”Q2 () = som || T (32-30) (1 - 3m(2—p))' (33)
for all z € V. Taking the limit m — oo,

OllzlP

Replacing (x,y, z) by (3™x,3™y,3™z) in (25), we have

IDp(3™x,3™y,3m2)|| < 0(|[3™x||P + |I13™y||” + [I3™z||P)
x 3My 3™z
”Dd) (32m ’'32m 32m)

Applying m — oo, show that Q, satisfies the functional equation (1).

(13™x|[P + [13™yl|P + |13™z|[P) (35)

- 32m —mp

To prove the uniqueness of Quadratic mapping Q,. Assume that there exists another Quadratic mapping
Q,, which satisfies inequality (27). Fix z € V. Clearly, Q,(3z) = 32(Q,(z) and Q,(3'z) = 32tQ,(z) for
all z € V. We have

, 3m 3m 3m (3m
”QZ(Z)_QZ(Z)” — ||Q2( Z)_d’( Z)+¢( Z)_QZ( z)

32m 32m 32m 32m

o1lz|P
— 32m-mp -1 (32_3;0)

(36)

Vol. 24 Issue 10, Oct 2021 Page|51



AFRICAN DIASPORA JOURNAL OF MATHEMATICS ISSN: 1539-854X
UGC CARE GROUP | www.newjournalzone.in

Taking m — oo, we have Q,(2) = Q , (2).

Theorem 3.3. Assume that V and W are Banach spaces. Let ¢: V™ — R* be a function such that

e @3z, 312z, 3i3z2) ¢(3'z, 312z, 3'3z) _

converges and limi_,oo = 0. Also, if a function ¢: V — W satisfies

i=0 32i 32i
the inequality
IDH(x,y, 2)|l < p(x,y,2) @37)
for all x,y,z € V, then the limit Q,(z) = lim,, 4’;3222), exists for each z in Vand Q,:V — W is unique
quadratic function such that
o ©(3'z, 312z, 3'32)
@) — Q@I < B2 Fmmm—— (38)

foranyz € V.
Proof: Replace (x,y, z) by (z,2z,32) in (37), we have
lp(32) — 320(2)|l < 9(2,22,32)
| $(32) — bz )” < (p(z 22 9(z, 22, 32) (39)

Replace z by 3¢z in (39), we have

¢(3t+1 @3z, 32z, 3t3z2)
|52 - g3t || < 2222 220,
d(3t*1z) ¢ (Biz) @ (3tz, 3%2z, 3'32)
| 32(+1) | g2t = 32(t+1) (40)
forall z € V. Since
$(3Mz) _ym-1 (¢B"2)  ¢B2)
32m —¢(2) = ?LO (32(i+1) Y ) (41)
So,
$(3M2) PB'*lz)  $(B'z)
| 32m _d)(Z)” < | 32(i+1) - 32i
1 @3z, 3t2z, 3'3z2)
< gt LR, (42)

Replacing z by 3™z in (42), we get
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P (3m1M2) _$(3™2) < Zm+m_1 @ (3tz, 3t2z, 3'3z2) " Zm_l @ (3tz, 3t2z, 3'3z2)
32(m+m) 32m = 4&ij=0 32(2+0) i=0 32(i+1)
m+m—1 ¢ (3tz, 3'2z, 3'3z2)
= Zi=m 32(i+1) (43)

forallzeV.

Taking the limit m — oo, we have

¢(3tz, 3t2z, 3'32)

”QZ (Z) - ¢(Z)” < Z?O:O , 32(i+1) (44)

Replacing (x,y, z) by (3™x,3™y,3™z) in (37), we have

IDp(3™x,3™y,3"2)|| < 9(3™x,3™y,3™2)

3Mx 3My 3Mgz
”Dd) (32m ' 32m ’32m)

< @(3™Mx, 3My, 3Mz)
- 32m "

(45)
Applying m — oo, show that Q, satisfies the functional equation (1).

To prove the uniqueness of Quadratic mapping Q,. Assume that there exists another Quadratic mapping
Q,, which satisfies inequality (38). Fix z € V. Clearly, Q,(3!z) = 3%tQ,(z) and Q,(3'z) = 3%tQ,(z) for
all z € V. We have

, Q, (3™ 3m 3m Q' 3m
1Q2(2) — Qu ()l = || 572 - £52 + £572 - 00

32m 32m 32m 32m

w  @QBiz, 312z, 3132) w @iz, 312z, 3i32)
= Zizm 32(+1) + Zizm 32(i+1) (46)

Taking m — oo, we have Q,(2) = Q,(2).

4. Stability of Functional Equation (1) using Fixed Point Method

Theorem: C (Banach contraction principle) Let (V,d) be a complete metric spaces consider a mapping

T:V — V which is strictly contractive mapping, that is,
(C) d(Tz, Ty) < d(z,y) for some (Lipschitz constant) L < 1, then

(i) The mapping T only has one fixed point, which is T(z *) = z .
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(ii) Every given element has a fixed point (z*) that is universally contractive.

(Cy) lim,,, .., T™z = z * for any starting pointz € V.

(iii) One has the following estimation inequalities,

(Co) d(T™z,z+) < ——d(T™z,T"*12),ym > 0, forall z € V.

(Cy d(z,zx*) < ﬁd(z,z x)forallz e V.

Theorem: D (Alternative Fixed Point)

Itf a generalized metric space (V,d) is complete and a strictly contractive mapping T:V — Vhas a

Lipschitz constant L, then for any given element z € V either,

(D) d(T™z, T"1z) =0V m > 0.

(D) There exists a natural number such that,

(i) d(T™z,T™*1z) <oV m > 0.

(i) The sequence {T™z} is convergent to a fixed point y* of T.

(iii) y* is the unique fixed point of T inthe set W = {y € W;d(T™0,y) < oo}.
(V) d(y*,y) < —d(y,Ty), forall y € W.

Theorem4.1 Let ¢: A — B be an even mapping for which there exists a function ¢: A™ — [0, o] with the

condition

i, ZEE2 A0 = 0 47)

where,

such that the functional inequality
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IDp(x,y, 2|l < p(x,y,2) (48)

for all x,y,z € V. If there exists L = L(i) such that the function

z- @) =0 (222 (49)
has the property,
FBED) = LB (50)

for each z € A. Then there exists a unique quadratic mapping Q,:A — B satisfying the functional
equation (1) and

(@) - Q@I <= 8@ (51)
holds for all z € A.

Proof : Introduce the generalized metric to the set V = {P\P: A — B, P(0) = 0} and then have a look at
the set V. d(p, q) = inf{K € (0,):||p(z) — q(2) II< KF(z), z € A}. It is clear that (V,d) is complete.
Define T:V - V by

1
T,(2) = -p(§2) (52)
forallze A.Nowp,q €V,

dip.q) <K

lp(z) — q(@)|l < KB(z), z€ A
”ép(fiz) _éQ(fiZ)” < éKﬂ(fiz), ZEA

ITp(2) —Tq(2)|l < LKB(2), z€ A

d(Tp,Tq) < LK.
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This means that d(Tp,Tq) < Ld(p,q) for each p,q € V. T is strictly contractive mapping on V with
Lipschtiz constant L. It follows from (48) that

l9(32) = 99 (Dl < @(z,22,32) (53)

for each z € A. It follows from (53) that

||¢(3z) ¢( )” <g0(z Zz 3z) (54)

for each z € A. From (50), for the case i = 1, it reduces to

122 - 9@ <38 (55)
for each z € A. (i.e.,) d(¢, To) < % = d(¢p,To) < % =L =1L < oo. Again replace z :g in (53), we
obtain

[¢@-2C) <053 (50)
for each z € A. Using (50) for i = 0, it reduces to,
|9¢ %) - 6@ < 0B@) (57)

foreachz € A. (i.e.,) d(¢,Tp) < 1= d(¢,Te) <1 = L° < oo. In the above case we reached
d(¢,Te) < L' (58)

Therefore (C,(i)) hold. Using (C,(ii)), it follows that exists a fixed point Q, of T in A, such that

mz),VZEA (59)

Q) = Jlim 252
m-oow &

To prove that Q,: A — B is quadratic. Using ({"x, &y, §["z) at place of (x,y, z) in (54) and dividing by
&, it follows from (46) and (59), we see that Q, satisfies (1) for all x,y,z € V. Hence Q, satisfies the

functional equation (1).

By using C, (iii), Q, is the unique fixed point of T in the set, W = {¢ € V;d(T¢p, Q;) < oo}. Using fixed

point alternative result, Q, is the unique function such that,

l¢(2) — Q22 < KB(2) (60)
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forall z € A and k > 0. Finally, by (C,(iv)), we obtain
1
d(¢,4) < = d($, TP) (61)

1-i
asd(¢,Q,) < iTL Hence, we conclude that

() — Q@I < 2= () (62)

for each z € A. This completes the proof.

5. Conclusion

In this manuscript a quadratic functional equation is invented. Hyers-Ulam-Rassias stability of this
functional equation is proved in Banach space using two different method, one is direct method and

another is fixed point method.
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