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Abstract  

In this study, we extend the concept of partial b-metric space to introduce Generalized partial b-metric 

space, building upon the work by S. Shukla in [25]. This new framework is motivated by the properties of 

partial b-metric spaces. We provide examples that illustrate scenarios not meeting the criteria of a partial 

b-metric space. Furthermore, our research includes the development and proof of several fixed point 

theorems. Notably, our findings generalize and expand upon various established results from existing 

literature.  
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1. Introduction 
In recent decades, there has been significant interest in advancing fixed point theory due to its numerous 

applications within metric spaces [1, 2]. A pivotal tool in this context is Banach's fixed point theorem [3], 

which holds wide relevance across diverse mathematical areas [4, 5, 6, 7, 8, 9, 10, 11, 12]. Scholars have 

made a concerted effort in recent years to extend this theorem to various generalized metric spaces [13, 

14, 15, 16, 17]. 

In subsequent developments, Bakhtin [18] and Czerwik [19] introduced b-metric spaces, an 

extension of metric spaces (also discussed in [20]). They established the contraction mapping principle 

for b-metric spaces, thus extending the well-known Banach contraction principle to this context. This laid 

the foundation for exploring fixed point theory within b-metric spaces, covering both single-valued and 

multi-valued operators. 

In 1994, Matthews (as referenced in [21, 22]) introduced partial metric spaces as part of 

denotational semantics for data flow networks. In these spaces, conventional metrics are replaced by 

partial metrics, where the self-distance of any point is not required to be zero. Matthews also 
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demonstrated the applicability of the Banach contraction principle [3] within partial metric spaces. 

Notably, partial metric spaces are vital in constructing models in computation theory (e.g., [23], [24], 

among others). Heckmann [23] later extended this concept by relaxing the small self-distance axiom, 

giving rise to the notion of weak partial metrics. 

More recently, Shukla [25] expanded upon the ideas of b-metric spaces and partial metric spaces, 

introducing the concept of partial b-metric spaces. In this context, Shukla not only formulated the Banach 

contraction principle but also established a Kannan-type fixed point theorem within partial b-metric 

spaces, providing illustrative examples to support these novel findings. 

 

In this paper, we introduce the concept of a generalized partial b-metric space and provide an 

example that demonstrates our definition. Additionally, we present several fixed point theorems 

applicable to generalized partial b-metric spaces. 

 

2. Preliminaries 
Firstly, we recall some basic definitions of metric spaces,  

Definition 2.1  [19]Let 𝑋 be a non-empty set and the self mapping 𝑑: 𝑋 × 𝑋 → 𝑅+ (𝑅+ stands for non-

negative reals) satisfies: 

(bM1) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦 for all 𝑥, 𝑦 ∈ 𝑋; 

(bM2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋; 

(bM3) there exist a real number 𝑠 ≥ 1 such that 𝑑(𝑥, 𝑦) ≤ 𝑠[𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦)] 

Then 𝑑 is called a b-metric on 𝑋 and (𝑋, 𝑑) is called a 𝑏 −metric space with coefficient 𝑠.  

 

Definition 2.2  [21]Let 𝑋 be a non-empty set and the self mapping 𝑑: 𝑋 × 𝑋 → 𝑅+ (𝑅+ stands for non-

negative reals) satisfies: 

(PM1) 𝑥 = 𝑦 if and only if 𝑑(𝑥, 𝑥) = 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑦); 

(PM2) 𝑑(𝑥, 𝑥) ≤ 𝑑(𝑥, 𝑦) 

(PM3) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) 

(PM3) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) − 𝑑(𝑧, 𝑧) 

Then 𝑑 is called a partial metric on 𝑋 and (𝑋, 𝑑) is called a partial metric space.  
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Definition 2.3  [25]Let 𝑋 be a non-empty set and the self mapping 𝑑: 𝑋 × 𝑋 → 𝑅+ (𝑅+ stands for non-

negative reals) satisfies: 

(Pb1) 𝑥 = 𝑦 if and only if 𝑑(𝑥, 𝑥) = 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑦); 

(Pb2) 𝑑(𝑥, 𝑥) ≤ 𝑑(𝑥, 𝑦); 

(Pb3) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥); 

(Pb4) there exist a real number 𝑠 ≥ 1 such that 𝑑(𝑥, 𝑦) ≤ 𝑠[𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦)] − 𝑑(𝑧, 𝑧). 

Then 𝑑 is called a partial 𝑏 −metric on 𝑋 and (𝑋, 𝑑) is called a partial 𝑏 −metric space with coefficient 𝑠. 

 

Remark 2.1In a partial 𝑏 −metric space (𝑋, 𝑑) if 𝑥, 𝑦 ∈ 𝑋 and 𝑑(𝑥, 𝑦) = 0, then 𝑥 = 𝑦, but the converse 

may not be true.  

 

Remark 2.2It is clear that every partial metric space is a partial 𝑏 −metric space with coefficient 𝑠 = 1 

and every 𝑏 −metric space is a partial 𝑏 −metric space with the same coefficient and zero distance. 

However, the converse of this fact need not hold.  

 

Example 2.1Let 𝑋 = 𝑅+, 𝑞 > 1 be a constant, and 𝑑: 𝑋 × 𝑋 → 𝑅+ be defined by  

 𝑑(𝑥, 𝑦) = [max{𝑥, 𝑦}]𝑞 + |𝑥 − 𝑦|𝑞 , 

for all 𝑥, 𝑦 ∈ 𝑋. 

Then (𝑋, 𝑑) is partial 𝑏 −metric space with 𝑠 = 2𝑞 > 1 but it is neither a 𝑏 −metric nor a partial 

metric space. Indeed, for 𝑥 > 0 we have 𝑑(𝑥, 𝑥) = 𝑥𝑞 ≠ 0; therefore, 𝑑 is not a 𝑏 −metric on 𝑋. Also for 

𝑥 = 6, 𝑦 = 2, 𝑧 = 3 we have 𝑑(𝑥, 𝑦) = 6𝑞 + 4𝑞  and 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) − 𝑑(𝑧, 𝑧) = 6𝑞 + 4𝑞 − 1𝑞 . So 

𝑑(𝑥, 𝑦) > 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) − 𝑑(𝑧, 𝑧). Hence 𝑑 is not a partial metric on 𝑋 but it is partial 𝑏 −metric for 

𝑠 = 2𝑞 . 

 

Definition 2.4 Let {𝑥𝑛} be a sequence in a partial 𝑏 −metric space (𝑋, 𝑑). Then: 

(1) The sequence {𝑥𝑛} is said to be a convergent in (𝑋, 𝑑), if there exists 𝑥∗ ∈ 𝑋 such that 

lim𝑛→∞𝑑(𝑥𝑛 , 𝑥∗) = 0. 

(2) The sequence {𝑥𝑛} is said to be a Cauchy sequence in (𝑋, 𝑑), if for every 𝜀 > 0 there exists a positive 

𝑛0 ∈ 𝑁 such that 𝑑(𝑥𝑛 , 𝑥𝑚 ) < 𝜀 for all 𝑛, 𝑚 > 𝑛0 (or, equivalently, lim𝑛,𝑚→∞𝑑(𝑥𝑛 , 𝑥𝑚 ) = 0). 

(3) (𝑋, 𝑑) is called a complete partial 𝑏 −metric space if every Cauchy sequence is convergent in 𝑋.  
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3.Main Results 
 

We introduce a Generalized partial b-metric space by the generalization of partial b-metric space is 

defined by:  

Definition 3.1 Let 𝑋 be a non-empty set and the self mapping 𝑑: 𝑋 × 𝑋 → 𝑅+ (𝑅+ stands for non-negative 

reals) satisfies: 

(Gp1) 𝑥 = 𝑦 if and only if 𝑑(𝑥, 𝑥) = 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑦) 

(Gp2) 𝑑(𝑥, 𝑥) ≤ 𝑑(𝑥, 𝑦) 

(Gp3) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) 

(Gp4) there exist a real number 𝑠 ≥ 1 such that 𝑑(𝑥, 𝑦) ≤ 𝑠[𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑤) + 𝑑(𝑤, 𝑦)] − 𝑑(𝑧, 𝑧) −

𝑑(𝑤, 𝑤) 

Then 𝑑 is called a generalized partial 𝑏-metric on 𝑋 and (𝑋, 𝑑) is called a generalized partial b-metric 

space with coefficient s.  

 

Example 3.1 Let 𝑋 = ℝ+, and 0, 𝛼 ∈ ℝ then define 𝑑: 𝑋 × 𝑋 → 𝑋 

 

  
0         𝑖𝑓𝑥 = 𝑦

3𝛼𝑖𝑓𝑥, 𝑦 ∈ {1,2}
𝛼𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

Then (X,d) is a generalized partial b-metric space but it is not a partial b-metric space. Indeed, 𝑑 1,2 ≤

𝑠 𝑑 1,3 + 𝑑 3,4 + 𝑑 4,2  − 𝑑 3,3 − 𝑑(4,4), i.e., 3𝛼 ≤ 3𝑠𝛼 but 𝑑 1,2 ≰  𝑠 𝑑 1,3 + 𝑑 3,2  −

𝑑 3,3 , i.e. 3𝛼 ≰ 2𝛼𝑠. 

Then it is easy to see that (𝑋, 𝑑) is a generalized partial 𝑏-metric space but it is not a partial 𝑏 −metric 

space. 

 

Theorem 3.1 Let (𝑋, 𝑑) be a Housdorff and complete generalized partial b-metric space , and the 

mapping 𝑇: 𝑋 → 𝑋 satisfying the following contraction mapping  

 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜆𝑑(𝑥, 𝑦) 

for all 𝑥, 𝑦 in 𝑋, where 𝜆 is called contractive constant of 𝑇. then T has a unique fixed point.  

 



Vol. 25 No. 6 (2022): June 

 

Page|228 

AFRICAN DIASPORA JOURNAL OF MATHEMATICS                    ISSN: 1539-854X 

UGC CARE GROUP I                  www.newjournalzone.in 

  

Proof. Let 𝑥 is an element of 𝑋, 𝑎𝑛 = 𝑇𝑛𝑥 for 𝑛 ≥ 0 and 𝑐 = inf𝑆, where  

 𝑆 = {𝑑(𝑎𝑛−1 , 𝑎𝑛): 𝑛 ∈ 𝑁} 

Now, we claim that 𝑐 = 0 

But if 𝑐 ≠ 0 then 𝑐 <
𝑐

𝜆
 and hence there is a positive integer 𝑛 such 𝑑(𝑎𝑛−1 , 𝑎𝑛) <

𝑐

𝜆
 so that 

𝜆𝑑(𝑎𝑛−1 , 𝑎𝑛) < 𝑐, By contractive property of 𝑇, we have  

 𝑑(𝑇𝑛𝑥, 𝑇𝑛+1𝑥) < 𝑐 

a contradiction to the minimality of 𝑐, therefore 𝑐 = 0. The monotonically decreasing property of the 

sequence 𝑑(𝑎𝑛 , 𝑎𝑛+1) implies that 𝑑(𝑎𝑛 , 𝑎𝑛+1) converges to 0  ...(2.1) 

Again we claim that 𝑇 has a periodic point. Suppose, to obtain a contradiction, 𝑇 has no periodic point. 

Then {𝑎𝑛} is a sequence of distinct points for 𝑚 > 𝑛 + 1, we have 

 

 𝑑(𝑎𝑛 , 𝑎𝑚 ) = 𝑑(𝑇𝑛𝑥, 𝑇𝑚𝑥) 

 ≤ 𝑠[𝑑(𝑇𝑛𝑥, 𝑇𝑛+1𝑥) + 𝑑(𝑇𝑛+1𝑥, 𝑇𝑚+1𝑥) + 𝑑(𝑇𝑚+1𝑥, 𝑇𝑚𝑥)] 

 −𝑑(𝑇𝑛+1𝑥, 𝑇𝑛+1𝑥) − 𝑑(𝑇𝑚+1𝑥, 𝑇𝑚+1𝑥) 

 ≤ 𝑠[𝜆𝑛𝑑(𝑥, 𝑇𝑥) + 𝜆𝑑(𝑇𝑛𝑥, 𝑇𝑚𝑥) + 𝜆𝑚𝑑(𝑇𝑥, 𝑥)] 

 ≤ 𝑠(𝜆𝑛 + 𝜆𝑚 )𝑑(𝑥, 𝑇𝑥) + 𝑠𝜆𝑑(𝑇𝑛𝑥, 𝑇𝑚𝑥) 

(1 − 𝑠𝜆)𝑑(𝑎𝑛 , 𝑎𝑚 ) ≤ 𝑠(𝜆𝑛 + 𝜆𝑚 )𝑑(𝑥, 𝑇𝑥) 

 

which implies that {𝑎𝑛} is a Cauchy sequence in (X,d)(by equation (2.1)). By completeness, 

𝑎𝑛 → 𝑎 for some 𝑎 in 𝑋. Also 𝑑(𝑇𝑎𝑛 , 𝑇𝑎) ≤ 𝜆𝑑(𝑎𝑛 , 𝑎) and 𝑑(𝑎𝑛 , 𝑎) → 0. So 𝑑(𝑇𝑎𝑛 , 𝑇𝑎) =

𝑑(𝑎𝑛+1 , 𝑇𝑎) → 0. Hence 𝑎𝑛 → 𝑎 and 𝑎𝑛+1 → 𝑇𝑎. Since (𝑋, 𝑑) is Housdorff it follows that 𝑎 = 𝑇𝑎, a 

contradiction to the assumption that 𝑇 has no periodic point. Thus 𝑇 has a periodic point say 𝑎 of period 

𝑛. Suppose if possible 𝑛 > 1. Then 𝑑(𝑎, 𝑇𝑎) = 𝑑(𝑇𝑛𝑎, 𝑇𝑛+1𝑎) < 𝜆𝑛𝑑(𝑎, 𝑇𝑎), a contradiction. So 𝑛 = 1 

and 𝑎 is a fixed point of 𝑇. If 𝑎, 𝑏 are fixed points of 𝑇 then 𝑑(𝑎, 𝑏) = 𝑑(𝑇𝑎, 𝑇𝑏) ≤ 𝑑(𝑎, 𝑏). Since 

0 < 𝜆 < 1, We have 𝑎 = 𝑏 

 

Following theorem is an analog to Kannan fixed point theorem see [26] in generalized partial b-metric 

space:  
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Theorem 3.2 Let (𝑋, 𝑑) be a complete generalized partial b-metric space, and the mapping 𝑇: 𝑋 → 𝑋 

satisfied Kannan contraction, then T has a unique fixed point.  

 

Proof. Let 𝑥0 be an arbitrary point in X. Let 𝑥1 = 𝑇(𝑥0). If 𝑥1 = 𝑥0 then 𝑇(𝑥0) = 𝑥0 this means 𝑥0 is 

fixed point of T and there is nothing to prove. 

Assume that 𝑥1 ≠ 𝑥0 Let 𝑥2 = 𝑇(𝑥1) . In this way we can define a sequence of points in 𝑋 as 

follows : 

 𝑥𝑛+1 = 𝑇 𝑥𝑛 = 𝑇𝑛+1 𝑥0   ∀ 𝑛 = 1,2,3, . .. 

using the inequality (1.1), we have  

 𝑑(𝑥𝑛 , 𝑥𝑛+1) = 𝑑(𝑇𝑥𝑛−1 , 𝑇𝑥𝑛) 

 ≤ 𝜆{𝑑(𝑥𝑛−1 , 𝑇𝑥𝑛−1), 𝑑(𝑥𝑛 , 𝑇𝑥𝑛)} 

 ≤ 𝜆{𝑑(𝑥𝑛−1 , 𝑥𝑛) + 𝑑(𝑥𝑛 , 𝑥𝑛+1)} 

 ≤
𝜆

1−𝜆
𝑑(𝑥𝑛−1 , 𝑥𝑛) 

 we can also suppose that 𝑥0 is not periodic point, In fact if 𝑥𝑛 = 𝑥0 , then  

 𝑑(𝑥0 , 𝑇𝑥0) = 𝑑(𝑥𝑛 , 𝑇𝑥𝑛) 

 ≤ 𝑑(𝑇𝑛𝑥0 , 𝑇𝑛+1𝑥0) 

 ≤ (
𝜆

1−𝜆
)𝑑(𝑇𝑛−1𝑥0 , 𝑇𝑛𝑥0) 

 ≤ (
𝜆

1−𝜆
)2𝑑(𝑇𝑛−2𝑥0 , 𝑇𝑛−1𝑥0) 

 . .. 

 . .. 

 ≤ (
𝜆

1−𝜆
)𝑛𝑑(𝑥0 , 𝑇𝑥0) 

 

put ℎ =
𝜆

1−𝜆
 then ℎ ≤ 1 and (1 − ℎ𝑛)𝑑(𝑥0 , 𝑇𝑥0) ≤ 0 this implies 𝑑(𝑥0 , 𝑇𝑥0) ≤ 0 

It follows that 𝑥0 is a fixed point of T. Thus in the sequal of proof we can suppose  

 𝑇𝑛𝑥0 ≠ 𝑥0 

Now inequality (1) implies that  
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 𝑑(𝑇0
𝑥 , 𝑇𝑛+𝑚𝑥0) ≤ 𝜆{𝑑(𝑇𝑛−1𝑥0 , 𝑇𝑛𝑥0) + 𝑑(𝑇𝑛+𝑚−1𝑥0 , 𝑇𝑛+𝑚𝑥0)} 

 ≤ 𝜆{ℎ𝑛−1𝑑(𝑥0 , 𝑇𝑥0) + ℎ𝑛+𝑚−1𝑑(𝑥0 , 𝑇𝑥0)} 

therefore, 𝑑(𝑥𝑛 , 𝑥𝑛+𝑚−1) → 0 as 𝑛 → ∞. 

It implies that {𝑥𝑛} is a cauchy sequence in X. Since X is complete, there exist 𝑢 ∈ 𝑋, such that 𝑥𝑛 → 𝑢 

By 4th property of generalized partial b-metric space, we have  

𝑑(𝑇𝑢, 𝑢) ≤ 𝑠[𝑑(𝑇𝑢, 𝑇𝑛𝑥0) + 𝑑(𝑇𝑛𝑥0 , 𝑇𝑛+1𝑥0) + 𝑑(𝑇𝑛+1𝑥0 , 𝑢)] 

                 −𝑑(𝑇𝑛𝑥0 , 𝑇𝑛𝑥0) − 𝑑(𝑇𝑛+1𝑥0 , 𝑇𝑛+1𝑥0) 

 ≤ 𝑠[𝑑(𝑇𝑢, 𝑇𝑛𝑥0) + 𝑑(𝑇𝑛𝑥0 , 𝑇𝑛+1𝑥0) + 𝑑(𝑇𝑛+1𝑥0 , 𝑢)] 

 ≤ 𝑠𝑑(𝑇𝑢, 𝑇𝑛𝑥0) + 𝑠𝑑(𝑇𝑛𝑥0 , 𝑇𝑛+1𝑥0) + 𝑠𝑑(𝑇𝑛+1𝑥0 , 𝑢) 

 ≤ 𝑠{𝜆[𝑑(𝑢, 𝑇𝑢) + 𝑑(𝑇𝑛−1𝑥0 , 𝑇𝑛𝑥0)]} + 𝑠𝑑(𝑇𝑛𝑥0 , 𝑇𝑛+1𝑥0) + 𝑠𝑑(𝑇𝑛+1𝑥0 , 𝑢) 

𝑑(𝑇𝑢, 𝑢) ≤ 𝑠𝜆𝑑(𝑢, 𝑇𝑢) + 𝑠𝜆𝑑(𝑇𝑛−1𝑥0 , 𝑇𝑛𝑥0) + 𝑠𝑑(𝑇𝑛𝑥0 , 𝑇𝑛+1𝑥0) + 𝑠𝑑(𝑇𝑛+1𝑥0 , 𝑢) 

(1 − 𝑠𝜆)𝑑(𝑢, 𝑇𝑢) ≤ 𝑠𝜆ℎ𝑛−1𝑑(𝑥0 , 𝑇𝑥0) + 𝑠ℎ𝑛𝑑(𝑥0 , 𝑇𝑥0) + 𝑠𝑑(𝑇𝑛+1𝑥0 , 𝑢) 

𝑑(𝑇𝑢, 𝑢) ≤
𝑠𝜆

(1 − 𝑠𝜆)
ℎ𝑛−1𝑑(𝑥0 , 𝑇𝑥0) +

𝑠

(1 − 𝑠𝜆)
ℎ𝑛𝑑(𝑥0 , 𝑇𝑥0) +

𝑠

(1 − 𝑠𝜆)
𝑑(𝑇𝑛+1𝑥0 , 𝑢) 

𝑑(𝑇𝑢, 𝑢) ≤
𝑠𝜆

(1 − 𝑠𝜆)
ℎ𝑛−1𝑑(𝑥0 , 𝑇𝑥0) +

𝑠

(1 − 𝑠𝜆)
ℎ𝑛𝑑(𝑥0 , 𝑇𝑥0) +

𝑠

(1 − 𝑠𝜆)
𝑑(𝑇𝑥𝑛 , 𝑢) 

 

Letting 𝑛 → ∞ and using the fact that, 𝑑(𝑎𝑛 , 𝑦) → 𝑑(𝑎, 𝑦) and 𝑑(𝑥, 𝑎𝑛) → 𝑑(𝑥, 𝑎). 

Whenever 𝑎𝑛  is a sequence in X with 𝑎𝑛 → 𝑎 ∈ 𝑋, We have  

 𝑑(𝑇𝑢, 𝑢) ≤ 0 + 0 +
𝑠

(1−𝑠𝜆)
𝑑(𝑇𝑢, 𝑢) 

 𝑑(𝑇𝑢, 𝑢) ≤ 0. 

This implies that 𝑇𝑢 = 𝑢. 

Now we have to show that 𝑇 has a unique fixed point. 

For this, assume that there exist another fixed point 𝑣 in 𝑋, such that 𝑇𝑣 = 𝑣. 

Now,  

 𝑑(𝑣, 𝑢) = 𝑑(𝑇𝑣, 𝑇𝑢) 
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 𝑑(𝑣, 𝑢) ≤ 𝜆[𝑑(𝑣, 𝑇𝑣) + 𝑑(𝑢, 𝑇𝑢)] 

 𝑑(𝑣, 𝑢) ≤ 𝜆[𝑑(𝑣, 𝑣) + 𝑑(𝑢, 𝑢)] 

 𝑑(𝑣, 𝑢) ≤ 𝜆[𝑑(𝑣, 𝑢) + 𝑑(𝑢, 𝑣)] 

(1 − 2𝜆)𝑑(𝑣, 𝑢) ≤ 0 

 𝑑(𝑣, 𝑢) ≤ 0. 

 Hence 𝑢 = 𝑣.  

 

4.Conclusion 
A partial b-metric space was introduced by S. Shukla in  [25] and also give some fixed point theorem. 

Now we introduce Generalized partial b-metric space motivated by partial b-metric space and we give 

some example which is not a partial b-metric space and we also prove some fixed point theorems. Many 

known results in the literature are also generalized by our finding. 
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